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VISCOUS LIQUID FLOW IN THE INITIAL SEGMENT OF A
FLAT CHANNEL WITH POROUS WALLS

V. N. Varapayev

ABSTRACT. The purpose of this article is to define the
nature of the flow in the initial segment of a flat channel
with a permeable and impermeable bottom. The investigation
is conducted by means of a numerical solution of the Navier-
Stokes equations by the finite-difference method.

In certain technical problems flows are encountered in channels which /178%
are formed as a result of the delivery of a fluid (or gas) through the chan-
nel walls (gas motion in a channel with porous walls, gas motion in the inter-
nal channels of powder charges, and fluid motion in wells). Laminar flows of
this type were studied theoretically in [1] and experimentally in [2]. During
the experimental study of the transition from the laminar flow regime to the
turbulent regime in pipes and annular channels with porous walls in [3] it
was discovered that the flow conditions along the front closed end (the chan-
nel bottom), where the results of the work [1] are not applicable, signifi-
cantly affect the transition.

The aim of the present work is determining the nature of flow in the
initial segment of a flat channel both for a case of an impermeable bottom as
well as for a case of delivery or withdrawal of fluid through the bottom. The
investigation was accomplished by means of the numerical solution of Navier-

. Stokes equations by the finite-difference method.

1. We shall examine the stationary flow of a viscous incompressible
fluid in a semi-infinite flat channel with parallel permeable walls, through
“which fluid is delivered at constant velocity Vor. The initial section of

_.the channel is the y-axis and the x-axis and is directed along the channel
axis. If for characteristic velocity and length we take indraft velocity

Vg and channel half-width a the flow under consideration in dimensionless

. .variables will be described by the equation
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Here RO is the indraft Reynolds number, v is the kinematic viscosity

coefficient, ¢ is the stream function, x and y are coordinates along and
across the channel, and A is a Laplacian.

Since we are examining the flow in the initial segment of the channel
we shall solve the problem in the region of @ = {0 <x <L, 0 <y <1},
utilizing the flow symmetry relative to the channel axis. The boundary con-
ditions for (1.1) will be the symmetry conditions on the channel axis

Y (=, O) P (=, 0)
e a2} (1.2)

the indraft conditions and disappearing longitudinal velocity component on
the permeable wall

3\})(&7, 1) 1' C A (=, 1)
oz - T oy

and the adhesion conditions in the initial section

‘ _=~_-_—Q o<y <), 1.4

The question of the boundary conditions on the right boundary (x = L)
will be examined below. 1In the case of indraft or suction through the bottom
of the channel the condition (1.4) is replaced by

39 (0, v) 29 (0, ) _m AN 1.
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Here Uy is fluid indraft (or suction) velocity through the bottom (b >0

~~corresponds to indraft, while b < 0 corresponds to fluid suction).

2. In the case of symmetrical fluid flow with respect to the initial
“ channel section, when in place of conditions involving adhesion to the bottom
of the channel (1 4) conditions of symmetry occur :

W o0, g
) ‘*a(l_ Do <y<y 2.1)

?mand a solution to the problem exists, as obtained in [1] and has the form

V= aF(y), 2.2)



For the function F(y) we obtain the equation
FOET e PR e 1 (2.3)

which must be solved with boundary conditions
FQQ) 2o P70) == 17 (1) == 0, i) =1, (2.4)

With large and small R, numbers the solution of the problem (2.3), (2.4)

0
may be approximated in analytical form while in a general case a numerical
integration of this boundary value problem is required. If for characteris-
tic velocity we do not take Voo but rather the velocity on the channel axis

in given section u(x, 0) it follows from (2.2) that in all channel sections
the velocities will be similar

u (x, 1/). CF (i/)
u(e, 0) = ()" (2.5)
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Figure 1. Figure 2.

Experimental results in the works [2] and [3] reveal that although con-

-ditions (1.4) or (1.5) are realized in experiments, rather than those in (2.1)

--velocity profiles (2.5) are established at a considerable distance from the

" bottom of the channel. Therefore we shall assume that in a case of fluid
~adhesion to the channel bottom at a considerable distance from it, the flow

~~will be described by the relationships (2.2) and (2.3), which we shall use in

~order to obtain boundary conditions where x = L. For this we multiply (2.3)

by x, and using (2.2) we obtain:
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Similar boundary conditions are employed in [4-6].

3. The equation (1.1) with boundary conditions (1.2)-(1.4) and (2.6)
was solved by the net-point method. For this purpose (1.1) was recorded in
the form of a system relative to the stream function ¢ and vorticity w,
which was then solved by the method established in [5]
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The difference plan for systems (3.1), (3.2) were written just as in
[5]. The basic calculations were accomplished on a uniform net h = 7 = 0.05
(h and 7 are steps in the net in accordance with the x and y coordinates).
The time step T was chosen from the stability condition of the plan depending

on the RO number. The calculation time for one variant according to the pro-

gram compiled in the "ALGOL" language, where L = 2 (800 nodal points) on the
M-20 ETsVM [electronic digital computer] amounted to 20-50 minutes, depending
on the RO number. o

4. We shall examine the boundary conditions for functions ¢ and w in
connection with the solution of systém (3.1), (3.2). We shall assume that
¥(0.1) = 0. Then from (1.2)-(1.4) it is easy to obtain conditions

o w0 =0 0<y<1)
e O=o(0=0 " Y)=2 O<z<L), (4.1)

The boundary conditions on the walls for w were established in the form /180
- of dependencies on values § and w at the limiting points with the aid of
“various approximations cited in.the work [7]. The results of the calculations
reveal that for the difference plan utilized the convergence velocity shows
“"practically no dependence on the form of the boundary conditions employed.
‘The condition (2.6) on the boundary x = L is written in the form

I R N 0 ap 2% A (4,2)‘
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Equations (4.2) were iterated
simultaneously with the basic system
(3.1), (3.2). Two different numerical
applications (4.2) were employed. In
the first of these expressions dw/3x and
3p/3x from (2.2) were replaced by F'" and
F. In this case the values for - ¢ and o
on the boundary x = L were determined
independently of the nature of the flow
where x < L by the relationships (2.2)
and (2.3) ("strict" boundary conditions).
In the second application the expressions
dw/9x and 3Y/3x were approximated on the
x = L with the aid of left linear three-
point difference formulas, with an error
of 0(h2). Here the values ¢ and w on
the boundary depend on the behavior of
Y and w at limiting points ('"mild" con-
ditions). Numerical experiments have
revealed that the application of strict
conditions leads to boundary effects
which significantly distort the solution
at limiting points. Under less strict
conditions such effects do wot arise.

Numerical calculations were accomplished in order to determine the

on the nature of the flow in the initial segment of
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channel where, 10 <§RO < 300. In conjunction with the case of an impermeable

channel bottom (b = 0) cases were examined for delivery (b > 0) or suction
(b < 0) of fluid through the botton.

Where b = 0 and with sufficiently large values RO a stagnation zone

develops near the center of the bottom the form of a pgir of symmetrical vor-
tices, which slowly rotates in opposite directions. Figure 1 shows.stream—
lines for b = 0 and RO = 200. The length of the rotational stagnation zone Zl

increases with increase in R0 while at large values RO this increase becomes

insignificant (Figure 2). Fluid velbcity in the stagnation zone is very low
and in the range of RO numbers under consideration the velocity does not ex-

ceed 0.06 Vo Figure 3 gives velocity distribution u(x, O)/v0 along the axis
near the channel bottom,

In order to evaluate the stability of flows in the base region the velo- /181
city' distribution in the different sections is of interest. Figure 4 shows
the profiles of longitudinal velecity components for b = 0, R0 = 50 in dif- __

ferent sections of the channel. In the initial sections the velocity profiles
have points of inflection which, from the point of view of the theory of sta-
bility of parallel flows, indicates their extreme instability. At a certain
distance from the channel bottom the velocity profiles take the form (2.5),

- obtained in [1] for symmetrical flow with respect to the initial section. We
shall designate by ZZ the segment length on which the velocity profiles dis-

play points of inflection. The dependence Z2 on the R, is shown in Figure 2.

0
At high values R, the value Z2 is proportional to Ry-
Experiments [3] revéaled the intensive influence of flow conditions in
the base region on the transition from laminar flow to turbulent flow in por-
ous pipes. In particular it was found that the indraft to the bottom led to
a decrease in the length of the laminar segment in the pipe and that suction

~led to its increase. Calculations made revealed for a fixed R0 number with an

increase in the indraft value, the value ZZ increased, while during suction it

~decreased. This is one of the possible explanations for the experimental
facts cited above. :

Figure 5 shows streamlines for R0 = 50 in the case of indraft (b = 0.5)

~and suction (b = -0.5) through the bottom. In both cases the stagnation .zones
which occur for b = 0 do not arise. We note that in the case of comparatively
-high suction the streamlines have the same form as during symmetrical fluid
.flow. This means that in experiments it is possible to exclude the influence
- of the channel bottom and to investigate flow stability (2.2) while drawing
off a part of the fluid through the bottom and computing the x coordinate
.. from the flow point, rather than from the channel bottom.
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